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Metastasis is the primary cause of cancer-related death in 
patients with cancer, but the timing and molecular deter-
minants of this process are largely uncharacterized1–3. In 

particular, when and how metastatic competence is specified are of 
clinical importance. The prevailing linear progression model pos-
its that metastatic capacity is acquired late following the gradual 
accumulation of somatic alterations, such that only a subset of cells 
evolve the capacity to disseminate and seed metastases4–7. However, 
at odds with this model, gene-expression signatures from primary 
tumors are predictive of distant recurrence, indicating that meta-
static cells constitute a dominant subpopulation in the primary 
tumor8,9. In addition, disseminated tumor cells have been identified 
in patients with early breast lesions10 and in mouse models of early 
breast and pancreatic cancers11–13. However, the timing of metastatic 
dissemination has not been evaluated in human cancers due to the 
challenge in obtaining paired primary tumors and distant metasta-
ses and the limitations of applying phylogenetic approaches to bulk 
tissue samples.

Colorectal cancer (CRC) is the third most commonly diag-
nosed cancer and leading cause of cancer death14, as well as a suit-
able model for studying tumor progression given that the initiating 
driver alterations are well-characterized4. The site and resectability 
of CRC metastases dictate treatment options and prognosis15,16; the 
liver is the most common site of metastasis, presumably because 
of venous drainage, and one-third of patients with metastatic CRC 
(mCRC) have liver-exclusive metastasis16. By contrast, brain metas-
tasis is a rare (less than 4% of mCRCs), but devastating diagnosis 
with limited therapeutic options and a median survival of three to 

six months17. In CRC, metastasis is assumed to be seeded by geneti-
cally advanced cancer cells that have evolved through a series of 
sequential clonal expansions4,18. However, CRC progression is not 
necessarily linear. Rather, we described a Big Bang model of tumor 
evolution, in which after transformation some CRCs grow as a sin-
gle expansion populated by heterogeneous and effectively equally fit 
subclones, and from which most detectable intratumor heterogene-
ity arises early19. These data suggest that some CRCs may be ‘born to 
be bad’, wherein invasive and even metastatic potential is specified 
early19,20. Effectively neutral evolution has since been reported in 
other primary tumors21–24, but the mode of evolution (effective neu-
trality versus subclonal selection) has not been evaluated in paired 
primary tumors and metastases.

Although the metastatic process is largely occult, spatio-tempo-
ral patterns of genomic variation are embedded in the evolutionary 
histories of paired primary tumors and metastases. Here we analyze 
exome-sequencing data from 118 biopsies from 23 patients with 
mCRC who had paired distant metastases to the liver or brain to 
delineate the timing and routes of metastasis and to define metasta-
sis-competent clones (Fig. 1). The data show that primary tumor–
metastasis genomic divergence (PMGD) is low and that genomic 
drivers were acquired early. Moreover, through simulation studies, 
we establish that low PMGD in bulk-sample sequencing data is 
indicative of early dissemination, contrary to current assumptions2. 
Phylogeny reconstruction and analysis of the mutational cancer 
cell fraction (CCF) revealed the early divergence of metastatic  
lineages and their monoclonal origin. To overcome the limitations 
of phylogenetic approaches—which cannot resolve the timing of 
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dissemination2,25–28—we developed a spatial computational model 
of tumor progression and Bayesian statistical inference framework 
to time dissemination in a patient-specific fashion. Furthermore, 
we validated the association between combinations of early driver 
genes and metastasis in an independent cohort of 2,751 CRCs,  
demonstrating their utility as biomarkers of aggressive disease. 
These results provide quantitative in vivo evidence for early meta-
static seeding in mCRC with implications for systemic therapy and 
earlier detection.

Results
Overview of clinical cohorts. Patients with mCRC exhibit varied 
progression paths, of which liver-exclusive metastasis and brain 
metastasis represent extreme scenarios with distinct prognoses15,16. 
We therefore characterized the genomic landscape, routes and tim-
ing of metastasis in mCRC by analyzing exome-sequencing data 
from 118 biopsies from 23 patients with paired distant metasta-
ses to the liver or brain (referred to as the mCRC cohort, Fig. 1a, 
Supplementary Fig. 1, Supplementary Table 1 and Methods). To 
investigate these patterns, we sequenced 72 samples from a unique 
cohort of 10 patients with mCRC who had paired brain metastases 

and some of whom had additional metastases to the liver (n = 1), 
lung (n = 1) and lymph nodes (n = 4). Five patients had brain-
exclusive distant metastasis (V402, V514, V855, V953 and V974), 
which is estimated to occur in only 2–10% of patients with brain 
metastasis16. For six patients, multi-region sequencing (MRS) of the 
paired primary tumor and metastasis (P/M pairs) was performed 
(3–5 regions each), enabling the detailed reconstruction of tumor 
phylogenies (Fig. 1b). Additionally, we included 46 tumor biopsies 
from 13 patients with mCRC who had paired liver metastases after 
excluding cases with low tumor cell purity (<0.4; Supplementary 
Fig. 2) from four published datasets21,29–31, analyzed using the same 
unified bioinformatics framework (Methods). No other sites of 
metastasis were reported for these patients and MRS was avail-
able for 3 P/M pairs (n = 2–9 regions each). As we have previously 
shown, MRS enables more accurate estimation of the cancer cell 
fraction (CCF) of sSNVs and discrimination between clonal and 
subclonal mutations relative to single-sample sequencing23 (Fig. 1b 
and Supplementary Fig. 3). Additionally, we leveraged an indepen-
dent collection of 2,751 patients with CRC, including 938 patients 
with metastatic disease (stage IV) and 1,813 patients with early-
stage disease (stages I–III) for whom targeted sequencing data from 
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Fig. 1 | Study overview. a, The cohort of patients with mCRC includes 118 tumor biopsies from 23 patients. Paired CRCs with metastases to the brain and 
other sites (liver, lung or lymph nodes) from 10 patients and 72 tumor biopsies were whole-exome sequenced, including 6 cases with MRS of 3–5 regions, 
each from the primary CRC and metastases. Additionally, four publicly available cohorts with paired CRCs and liver metastases from 13 patients and 
46 tumor biopsies were reanalyzed within the same bioinformatics framework, including 3 cases with MRS. b, Tumor phylogenies were reconstructed 
from somatic alterations (sSNVs and indels). The mutational CCF was computed for each primary CRC and metastasis pair. c, Schematic illustration of 
tumor evolution starting from a normal cell that acquires mutations leading to malignant transformation, growth of the primary tumor and metastatic 
dissemination, seeding and outgrowth. It is unknown whether dissemination occurs early from a dominant subclone when the size of the primary tumor 
is below the limits of clinical detection (108 cells or 1 cm3) (early dissemination) or later from a minor subclone after the acquisition of additional driver 
alterations (late dissemination). To address this question, we developed a three-dimensional model of tumor growth and statistical inference framework 
to time metastasis from patient genomic data. d, We further leveraged a large collection of metastatic (n = 938) and non-metastatic (n = 1,813) CRCs with 
targeted sequencing data to evaluate the association between specific combinations of early driver genes (modules) identified in the mCRC cohort.

NAtuRe GeNetiCS | VOL 51 | JULY 2019 | 1113–1122 | www.nature.com/naturegenetics1114

http://www.nature.com/naturegenetics


ArticlesNature GeNetics

the MSK-Impact32 and GENIE33 studies were available in order to 
evaluate the association between specific combinations of early 
driver genes (modules) defined in the mCRC cohort and metastatic 
propensity (Fig. 1d and Methods).

Genomic heterogeneity in CRCs and paired metastases. High 
concordance among putative driver genes was observed in the 
mCRC cohort (Fig. 2a), consistent with previous studies21,29,34–37. For 
instance, mutations in KRAS, TP53, SMAD4, TCF7L2, FN1, ELF3 

and ATM were completely concordant between P/M pairs (Fig. 2a 
and Supplementary Table 2). On average, 70% of high-frequency 
somatic single-nucleotide variants (sSNVs) and small insertions 
and deletions (indels) with CCF > 60% (Methods) in any primary 
tumor or metastasis were shared by both lesions (Fig. 2b). Among 
genes that were mutated in more than five patients, SYNE1 (four 
out of six patients) and APOB (three out of five patients) tended 
to be private to the primary tumor or metastasis and thus likely 
arose after transformation. Although metastases usually had more 
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Fig. 2 | the mutational landscape and patterns of genetic divergence in paired primary CRCs and metastases. a, Concordance among somatic alterations 
(sSNVs, indels and CNAs) in known CRC driver genes between paired primary CRCs and metastases. Stacked bar plots illustrate the total number of 
sSNVs and indels in exonic regions with a lower cut-off of variant allele frequency = 0.1 in the corresponding site (primary tumor or metastasis). BM, 
brain metastasis; LI, liver metastasis; LN, lymph node metastasis; LU, lung metastasis. b, The percentage of clonal sSNVs/indels that are shared, primary 
tumor-private or metastasis-private out of all clonal sSNVs/indels with CCF > 60% in any of paired primary tumors and distant metastases. c, Violin plots 
illustrate the probability density of driver gene fold enrichment among shared, primary tumor-private and metastasis-private clonal non-silent sSNVs/
indels based on known CRC or pan-cancer drivers. The inset box corresponds to the 25th to 75th percentile (interquartile range); the horizontal line 
indicates the median; and the vertical line includes data within 1.5× the interquartile range. A test statistic was computed based on n = 100 downsamplings 
among patients (Methods). P value, two-sided Wilcoxon rank-sum test. P, primary tumor; LN, lymph node metastasis; LI, liver metastasis; LU, lung 
metastasis; BM, brain metastasis.
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private high-frequency sSNVs than the primary tumor (P = 0.020, 
Wilcoxon rank-sum test; Fig. 2b), they were not enriched for CRC 
drivers (defined based on IntOGen38 and The Cancer Genome 
Atlas (TCGA)39) or a published list of pan-cancer drivers40 (Fig. 2c, 
Supplementary Table 3 and Methods). Similar results were obtained 
when stratifying by brain or liver metastases (Supplementary Fig. 4). 
These data reflect limited driver-gene heterogeneity between P/M 
pairs and suggest that few additional private genomic drivers were 
required for metastasis when the primary CRC is already advanced. 
Somatic copy-number alterations (CNAs) were also generally concor-
dant, with chromosomes 7p22.3–12.1, 13 and 20q11–13 exhibiting 
recurrent amplification and chromosomes 8p23.3–23.2, 8p21.3–
21.2 and 18 exhibiting recurrent deletion in P/M pairs41 (Fig. 2a  
and Supplementary Fig. 5). Several putative oncogenes, including  
PIK3CA, GNAS, SRC, FXR1, MUC4, GPC6 and MECOM were 
recurrently (≥4 patients) amplified in metastases relative to paired 
primary tumors. Notably, HTR2A (encoding 5-hydroxytryptamine 
receptor 2A)—which encodes a receptor for the neurotransmitter 
serotonin (which also functions as a regulatory factor in the gastroin-
testinal tract42)—was amplified more frequently in brain (4 out of 10)  
than liver (1 out of 13) metastases (Supplementary Fig. 5).

We defined the number of metastasis-private clonal sSNVs  
as Lm (merged CCF > 60% in the metastasis samples and <1%  
in the primary tumor samples) and the number of primary tumor-
private clonal sSNVs as Lp (merged CCF > 60% in the primary and 
<1% in the metastasis), where a cut-off of 60% accurately distin-
guished clonal and subclonal sSNVs (Fig. 1b and Supplementary 
Figs. 6, 7a,b). Therefore, we used a merged CCF value of 60% as 
the cut-off to distinguish clonal and subclonal mutations through-
out. Brain metastases exhibited higher Lm than liver metas-
tases (median = 24.5 compared to 9.5, respectively, P = 0.01, 
Wilcoxon rank-sum test), whereas no difference was found for Lp 
(median = 8.5 compared to 6.0, respectively, P = 0.70, Wilcoxon 
rank-sum test; Supplementary Fig. 7c), potentially reflecting longer 
progression times (and more cell divisions). Neither Lm (P = 0.68, 
Wilcoxon rank-sum test) nor Lp (P = 0.95, Wilcoxon rank-sum test) 
differed significantly in chemotherapy-naive versus treated cases 
despite a slight shift in mutational spectra (A|T>C|G) after chemo-
therapy (Supplementary Fig. 8).

Gene ontology analysis showed enrichment for cellular adhesion 
terms among both brain and liver metastasis-private non-silent 
clonal mutations, but not primary tumor-private clonal or subclonal 
mutations (Supplementary Table 4). Nervous system development 
and neuronal differentiation terms were enriched among brain 
and liver metastasis-private clonal mutations and primary tumor-
private mutations, consistent with hijacking of the enteric nervous 
system in gastrointestinal malignancies43. By contrast, primary 
tumor-private non-silent clonal mutations were enriched for meta-
bolic processes, DNA repair and damage, suggestive of more gen-
eral deregulation and resource constraints during tumor expansion.

Phylogenetic reconstruction of metastatic CRC. The MRS data 
revealed extensive intratumor heterogeneity both within tumors 
and between P/M pairs (Fig. 3a,b, Supplementary Fig. 9 and 
Supplementary Table 2) and ample mutations for phylogeny recon-
struction. We used the FST statistic44 to quantify intratumor hetero-
geneity within tumors (primary tumor or metastasis) in the mCRC 
cohort based on subclonal sSNVs23 (Methods). Clonal mutations 
present in all samples do not contribute to intratumor heteroge-
neity and were excluded from FST calculations. Both the primary 
tumor (median FST = 0.180, range = 0.150–0.430) and paired metas-
tases (median FST = 0.178, range = 0.123–0.271) exhibited high FST  
values, consistent with rapid genetic diversification (Supplementary 
Fig. 10a). Proliferative indices based on Ki-67 staining were also 
similar between paired CRCs and metastases (P = 0.765, Wilcoxon 
signed-rank test, Supplementary Fig. 10b).

Tumor phylogenies were reconstructed using sSNVs and indels 
across multiple regions of each P/M pair using the maximum parsi-
mony method45. Distant metastases corresponded to monophyletic 
clades in all but one (Kim1) case (eight out of nine cases with MRS; 
Fig. 3c, Supplementary Fig. 9 and Methods), consistent with the 
unique origin of the metastatic lineage. Inspection of the phylogeny 
for Kim1 indicated that the liver metastasis preceded the primary 
tumor, which is improbable and likely due to metastasis-specific 
loss of heterozygosity (LOH) spanning multiple mutations. In most 
patients, the metastatic lineage diverged before genetic diversifica-
tion of the primary tumor (V402, V930, V953, V974 and Uchi2; 
early divergence), whereas divergence occurred during diversi-
fication of the primary tumor in patients V750, V824 and Kim2  
(late divergence). All brain metastases and most liver metastases 
contained many private clonal sSNVs, but lacked shared subclonal 
sSNVs with the primary tumors, consistent with monoclonal seed-
ing (Supplementary Figs. 11, 12), as demonstrated by simulation 
studies (Supplementary Fig. 13). Two liver metastases (Lim6 and 
Lim11) exhibited enrichment of shared subclonal mutations, but 
lacked metastasis-private clonal mutations, consistent with poly-
clonal seeding (Supplementary Figs. 12, 13). These data suggest that 
distant metastases are often seeded by a single clone (a single cell or a 
group of genetically similar cells). Notably, the phylogenetic tree for 
case V930 indicates that the brain metastasis derived from the lung 
metastasis, in line with the clinical history of the patient (Fig. 3).  
Brain metastases and regional lymph node metastases formed 
separate clades in the two cases in which they were profiled (V750 
and V824), indicative of their independent clonal origin from the  
primary tumor (Fig. 3c and Supplementary Fig. 9) and consistent 
with polyguanine-repeat analysis46.

The finding that paired CRCs and metastases formed separate 
phylogenetic clades in most patients suggests that metastatic dis-
semination may occur early during cancer development, such that 
the primary tumor has sufficient time to accumulate many unique 
clonal mutations after dissemination. However, phylogenetic diver-
gence may occur much earlier than dissemination (Supplementary 
Fig. 14) and phylogenetics cannot resolve the timing of dissemina-
tion2,25–28. As such, we next investigated the determinants of PMGD 
and quantified the timing of metastasis.

The timing of dissemination and PMGD. To model the evolu-
tionary dynamics of metastasis, we developed a three-dimensional 
agent-based computational model to simulate the spatial growth, 
progression and lineage relationships of realistically sized patient 
tumors under varied parameters19,23 (Fig. 4a, Supplementary Fig. 15, 
Supplementary Table 5 and Methods). We modeled the growth of a 
primary CRC starting from a single founder cell and assumed that 
the metastasis was seeded by a random single cell from the periph-
ery of the primary tumor, yielding primary and metastatic tumors 
composed of approximately 109 cells (around 10 cm3). To account 
for distinct modes of tumor evolution, we simulate effective neu-
trality and stringent subclonal selection19,23, resulting in four evo-
lutionary scenarios for P/M pairs: neutral/neutral (N/N), neutral/
selection (N/S), selection/neutral (S/N) and selection/selection 
(S/S) (Fig. 4a, Supplementary Figs. 15, 16 and Methods). Using this 
simulation framework, for which ground-truth values are known, 
we evaluated the relationship between the number of metastasis-
private clonal sSNVs (Lm) and the primary CRC size at the time of 
dissemination (Nd) in hundreds of virtual paired P/M tumors, for 
which size is a surrogate measure for time, as cell division rates are 
unknown (Methods).

To define Lm, we first evaluated metastasis-private clonal  
sSNVs with relatively high-frequency sSNVs in the whole primary 
tumor (CCF > 1%). Therefore, any clonal sSNVs in the metastasis 
will be private to the metastasis if CCF < 1% in the primary tumor. 
We found that Lm is positively correlated with Nd under all four  
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evolutionary scenarios (Fig. 4b). The positive relationship between 
Lm and Nd remains significant when accounting for variation in 
mutation rate, cell birth and death rate, and selection intensity dur-
ing tumor growth (Supplementary Fig. 17). We next evaluated Lm 
by simulating sequencing reads from variable numbers of primary 
tumor regions (n = 1, 10, 50 or 100) while considering the whole 
metastasis as a bulk sample within our computational model. The 
positive correlation between Lm and Nd was highly significant 
under all sampling scenarios, pointing to the robustness of this 
observation (Supplementary Fig. 18). As expected, smaller Lm was 
observed when a greater number of primary tumor regions were 
sequenced because fewer mutations were private to the metastasis 
(Supplementary Fig. 18). Mathematical analysis of the special case 
of neutral evolution and exponential growth further demonstrates 

the positive relationship between Lm and Nd (Supplementary Note, 
Supplementary equation (6)). These data suggest that later dissemi-
nation results in more clonal mutations in the metastasis, many 
of which are at low frequency in the primary tumor and are often 
undetectable in bulk sequencing. Accordingly, later dissemination 
will give rise to more metastasis-private clonal mutations in real 
sequencing data, leading to higher PMGD. It should be noted that 
if sampling of the primary tumor was exhaustive or if the metas-
tasis-founder clone could be traced—neither of which are gener-
ally practical for studies of tumors in human patients—one would 
expect very small Lm values and no correlation between Lm and Nd 
since all mutations in the metastasis-founder cell that accumulated 
during primary tumor growth would be captured. By contrast, the 
number of primary tumor-private clonal sSNVs (Lp) exhibited a 

V750

20.0

P 3APC, KRAS, TP53,
PIK3CA, TCF7L2, EYS

PARK2

MED24

BM 5

BM 1

BM 4

BM 3

Normal

P 2

P 1

BM 2

20.0

LU 2

P 5

BM 1

P 2

LU 1

BM 2

BM 4

P 4

LU 3

BM 3

P 3

BM 5
Normal

P 1
APC, KRAS,

SYNE1, TCF7L2

MSR1, FN1

AKAP9

PTPRT

20.0
BM 3

APC, KRAS,
TP53, SMAD4,

SYNE1, PIK3R1 PPP2R1A

RP1L1,
CNOT1,
CYLC1

APOB

LIG1

Normal

P 3

P 2

LN 3

P 4

BM 5

BM 1

P 1

BM 2

LN 1
LN 2

P 5

116 18 21 115 75 287

V750 BM 5

V750 BM 4

V750 BM 3

V750 BM 2
V750 BM 1
V750 LN 3

V750 LN 2

V750 LN 1
V750 P 5
V750 P 4
V750 P 3
V750 P 2

V750 P 1

S
M

A
D

4
T

P
53

S
Y

N
E

1
K

R
A

S
A

P
C

P
IK

3R
1

A
P

C
A

P
C

S
Y

N
E

1
D

N
A

H
8

A
P

O
B

A
P

O
B

LI
G

1
P

P
P

2R
1A

C
Y

LC
1

C
O

N
T

1
R

P
1L

1

S
Y

N
E

1

61 53 57 162 56 48

V930 BM 5
V930 BM 4
V930 BM 3
V930 BM 2
V930 BM 1
V930 LU 3
V930 LU 2
V930 LU 1

V930 P 5
V930 P 4
V930 P 3
V930 P 2
V930 P 1

T
C

F
7L

2
A

P
C

K
R

A
S

A
P

C
S

Y
N

E
1

F
N

1
M

S
R

1

A
K

A
P

9

P
T

P
R

T
R

P
1L

1

133 84 65

V974 BM 5

V974 BM 4
V974 BM 3
V974 BM 2

V974 BM 1
V974 P 3

V974 P 2
V974 P 1

T
P

53
T

C
F

7L
2

A
P

C
K

R
A

S
P

IK
3C

A

E
Y

S
A

P
C

P
A

R
K

2 VAF ≥ 0.1

VAF < 0.1

V974

V930

b c

BM to local 
reccurence

No gamma knife

No chemotherapy

No WBRT

No gamma knife

No chemotherapy

No WBRT

Chemotherapy
(5FU)

No
evidence

of disease

No
evidence

of disease

Disease
progression

Chemotherapy, capecitabine
(5FU)

Stable disease

Disease progression

a

No evidence of disease ChemotherapyV402

67 216 144

V402 BM 4

V402 BM 3

V402 BM 2

V402 BM 1

V402 P 4

V402 P 3

V402 P 2

V402 P 1

20.0

P 2

P 3

BM 1

BM 3

P 4

P 1

Normal

BM 4

BM 2

Early
divergence

Early
divergence

Early
divergence

Late
divergence

APC, KRAS,
PTEN, APOB,

WIPF1, AMER1

ERBB3

ATRXA
M

E
R

1

W
IP

F
1

A
P

O
B

K
R

A
S

A
P

C
P

T
E

N

A
T

R
X

M
E

D
24

E
R

B
B

3

4 
ye

ar
s, 

8 
m

on
th

s

Dx P
, S

x

BM
, S

x

7 
ye

ar
s, 

8 
m

on
th

s

(d
ea

th
)

Dx P
, S

x

BM
, S

x

5 
m

on
th

s

13
 m

on
th

s

(d
ea

th
)

Rec
ur

rin
g 

BM
, S

x

y

2 
ye

ar
s, 

2 
m

on
th

s

4 
ye

ar
s, 

8 
m

on
th

s

8 
ye

ar
s, 

7 
m

on
th

s

10
 ye

ar
s, 

6 
m

on
th

s

(d
ea

th
)

BM
, S

x

LU
, S

x

LI
, S

x

Dx P
, S

x

6 
m

on
th

s

10
 m

on
th

s

(d
ea

th
)

BM
, S

x

Dx P
, S

x

LN
, S

x
P, S

x
P, S

x LIxx
LU

Fig. 3 | Within- and between-lesion heterogeneity in paired primary CRCs and metastases. a, Clinical and treatment history for four representative 
patients who had CRC with brain metastases. Dx, diagnosis; Sx, surgical resection. b, Patterns of within- and between-lesion heterogeneity among sSNVs 
and indels based on MRS of paired primary CRCs and metastases, for which canonical CRC driver genes are labeled. The number of mutations that 
are shared or private among different lesions is indicated below as the corresponding colored horizontal bars: ubiquitously P/M shared (red), partially 
P/M shared (green indicates M1; blue indicates M2), primary tumor-private (pink) or metastasis-private (yellow indicates M1 and gray indicates M2; 
or cyan indicates M1 and M2). P corresponds to primary tumor. M1 and M2 correspond to different metastatic sites in the same patient when multiple 
metastatic sites were sampled (V974: M1-LU, M2-BM; V750: M1-LN, M2-BM). c, Phylogeny reconstruction using maximum parsimony (PHYLIP) based 
on mutational presence or absence, for which canonical CRC drivers genes are labeled. VAF, variant allele frequency. WBRT, whole-brain radiation therapy. 
5FU, 5-fluorouracil.

NAtuRe GeNetiCS | VOL 51 | JULY 2019 | 1113–1122 | www.nature.com/naturegenetics 1117

http://www.nature.com/naturegenetics


Articles Nature GeNetics

slightly negative correlation with Nd when CRCs grew under strin-
gent selection (S/N or S/S), whereas under neutral evolution (N/N 
or N/S) Lp ≈ 0, regardless of the timing of dissemination (Fig. 4b and 
Supplementary Fig. 17).

We defined early dissemination as Nd < 108 cells (around 1 cm3 
in volume)—the size at which CRCs are generally clinically detect-
able—and late dissemination as Nd ≥ 108 cells. To establish intuition 
for the relationship between PMGD and Nd, we defined H = Lm/
(Lp + 1). In the simulation studies, H was positively correlated with 
Nd (Fig. 4b and Supplementary Fig. 17), indicating that larger H 
values are associated with later dissemination. Indeed, late dissemi-
nation typically results in large H (>20) (Fig. 4b). The observation 
that most patients in the mCRC cohort exhibited small H values 
(median = 2.4, range = 0.5–23.5) suggests that early dissemination 
may be relatively common. Although H is strongly associated with 
the timing of dissemination, it does not capture all components 
of PMGD, including the mutation rate, as this is cancelled out in 
the division of Lm over Lp. Additionally, variation in Lp due to dif-
ferences in the mode of evolution and sampling bias contribute to 

noise in H. To account for these sources of variability while estimat-
ing the timing of dissemination in individual patients, we turned to 
a powerful statistical inference framework grounded in population 
genetics theory.

Quantitative evidence for early metastatic seeding in CRC. In 
order to infer the timing of dissemination Nd, mutation rate u (per 
cell division in exonic regions) and mode of tumor evolution in P/M 
pairs, we developed SCIMET (spatial computational inference of 
metastatic timing), which couples our spatial (three-dimensional) 
agent-based model of tumor evolution with a statistical inference 
framework based on approximate Bayesian computation (ABC)47,48 
(Fig. 4a, Supplementary Figs. 15, 16, 19, Supplementary Tables 6, 
7 and Methods). The use of ABC is well-established in population 
genetics and has been utilized to infer the parameters of tumor 
evolution19,49. As the patient genomic data were generally consis-
tent with monoclonal seeding, we assumed that a single cell seeds 
the metastasis (Lim6 and Lim11 were therefore excluded from this 
analysis). Evaluation of SCIMET on virtual tumors demonstrates 
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the accurate recovery of the mutation rate and timing of dissemina-
tion (Supplementary Fig. 20).

The majority (90%) of CRCs and metastases (57%) exhibited 
patterns consistent with subclonal selection (Fig. 5a). Inference of 
patient-specific mutation rates using SCIMET showed an order 
of magnitude variation across patients (inferred u or ũ = 0.06–
0.6, corresponding to 10−9–10−8 mutations per base pair per cell  
division). Notably, in 83% (19 out of 23) P/M pairs from 17 out of 
21 patients, dissemination was estimated to occur early when the 
primary CRC was below the limits of clinical detection (inferred 
Nd or N͠d < 108 cells) and typically when the primary tumor was  
composed of fewer than 106 cells using conservative estimates  
(Fig. 5a and Methods). The N͠d values were also significantly smaller 
than the tumor size documented at the time of diagnosis in this 

cohort (Supplementary Table 1). Of note, early dissemination  
was common irrespective of the site of distant metastasis (8 out  
of 10 brain and 10 out of 12 liver). Congruent results were  
obtained when accounting for higher ratios of cell birth and death 
rates in the primary CRC and metastasis (Supplementary Fig. 21), 
the collective dissemination of small clusters of cells (n = 10 cells; 
Supplementary Fig. 22) or single-region sampling (Supplementary 
Fig. 23). Among the four cases for which late dissemination was 
inferred, three had MRS data, enabling comparison with their phy-
logenies. For two patients (V750 brain metastasis and Kim2 liver 
metastasis), late dissemination was consistent with the tumor phy-
logeny (Fig. 3c and Supplementary Fig. 9). For patient V930, late 
dissemination was inferred for both the lung and brain metastases, 
consistent with the large H values (brain, H = 23.5; lung, H = 11). 
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However, the tumor phylogeny indicates early divergence of the 
metastatic lineage (Fig. 3c). This case illustrates that phylogenetic 
divergence can occur before dissemination (Supplementary Fig. 14),  
emphasizing the need for a quantitative evolutionary framework to 
time metastasis.

The N͠d values based on SCIMET were positively correlated 
with H (Pearson’s r = 0.63, P = 0.001; Fig. 5b), consistent with the 
observation that the H metric reflects the timing of dissemination. 
Additionally, both N͠d and H were positively correlated with the time 
elapsed between diagnosis of the primary CRC and distant metas-
tasis (Fig. 5b), suggesting that metastases that are diagnosed later 
likely disseminated later. Furthermore, we estimated the time span 
between metastatic dissemination and surgical resection of the pri-
mary tumor using an approximate analytical function for our spatial 
tumor growth model and found that dissemination often occurred 
more than three years before surgery (Supplementary Fig. 24 and 
Supplementary Note).

Metastasis-associated early driver gene modules. As noted above, 
most canonical drivers were clonal and shared between paired pri-
maries and metastases (Fig. 2), indicative of their early acquisition 
before transformation. Taken together with the finding that cancer 
cells seed metastases early in the majority of mCRCs in this cohort, 
specific combinations of early driver genes (modules) may confer 
metastatic competence. In support of this view, oncogene engineer-
ing of four canonical early driver genes (APC, KRAS, TP53 and 
SMAD4) in wild-type primary colon organoids yielded metastases 
after xenotransplantation50. Similarly, in a mouse model of CRC, 
oncogenic Kras in combination with Apc and Trp53 deficiency was 
sufficient to drive metastasis51.

We therefore evaluated the association between the early driver 
modules defined in the mCRC cohort and metastatic proclivity 
by analyzing a collection of 2,751 patients with CRC, including 
938 patients with metastatic disease (stage IV) and 1,813 patients with 
early-stage CRC (stages I–III) that were prospectively sequenced as 
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part of the MSK-Impact32 and GENIE33 studies (Methods). Notably, 
we find that numerous early driver gene modules were significantly 
enriched in metastatic relative to early-stage CRCs in this indepen-
dent dataset after correction for multiple-hypothesis testing (Fig. 6a, 
Supplementary Fig. 25, Supplementary Table 8 and Methods). These 
modules consist of a backbone of canonical core CRC drivers (com-
binations of APC, KRAS, TP53 or SMAD4) with one additional can-
didate metastasis driver (TCF7L2, AMER1 or PTPRT). Collectively, 
the core modules plus an additional candidate metastasis driver 
show statistically significant enrichment in metastatic versus early 
stage CRCs (18% compared to 5.6%, respectively, q = 2.9 × 10−20). 
Examination of the prevalence and enrichment of individual mod-
ules indicates that PTPRT mutations in combination with canonical 
drivers were almost exclusively observed in patients with metastases 
(Fig. 6a and Supplementary Fig. 25). Thus, PTPRT appears to be a 
highly specific driver of metastasis. PTPRT mutations were previ-
ously reported in 26% of CRCs52 and loss of PTPRT in CRC and in 
head and neck squamous cell cancers results in increased STAT3 
activation and cellular survival53,54. It has therefore been proposed 
that PTPRT mutations may be predictive biomarkers for STAT3 
pathway inhibitors, highlighting new therapeutic opportunities54. 
Other modules, which involved AMER1 and TCF7L2, were also 
significantly enriched in metastatic cases, but were less specific; 
perhaps because an additional driver defines the module. We there-
fore identify a compendium of metastasis driver modules that can 
inform the stratification and therapeutic targeting of patients with 
aggressive disease.

Discussion
We describe a theoretical and analytical framework that yields quan-
titative in  vivo measurements of the dynamics of metastasis in a 
patient-specific manner, while accounting for confounding factors, 
including the metastasis founder event, the mode of tumor evolu-
tion, mutation rate variation and tissue sampling bias. By analyz-
ing genomic data from paired primary CRCs and distant metastases 
to the liver and brain from five patient cohorts within this evolu-
tionary framework, we demonstrate that metastatic seeding often 
occurs early (17 out of 21 patients), when the carcinoma is clini-
cally undetectable (~104–108 cells or 0.0001–1 cm3) and years before 
diagnosis and surgery (Fig. 5 and Supplementary Figs. 21–24). The 
observation that early metastatic seeding was prevalent irrespective 
of the site of distant metastasis, indicates the generalizability of these 
results. Moreover, dissemination was early even when considering 
liver-exclusive and brain-exclusive metastases, which represent 
extremes in terms of their prevalence and prognosis. Collectively, 
these findings indicate that CRCs can be ‘born to be bad’, for which 
invasive and metastatic potential is specified early19,20,55, illuminating 
the need to target the canonical drivers of tumorigenesis. However, 
not all tumors will metastasize and there is an urgent need to iden-
tify biomarkers that are associated with aggressive disease.

Towards this end, we validated metastasis-associated driver mod-
ules in an independent cohort, thus defining the molecular features 
of metastasizing clones. The overlap with drivers of initiation and 
combinatorial structure of these modules may explain why few driv-
ers of metastasis have been identified to date. Although the canoni-
cal driver landscape is relatively sparse, there are nonetheless many 
possible combinations of mutations that collectively disrupt key sig-
naling pathways (WNT, TP53, TGFB, EGFR and cellular adhesion) 
enabling niche independence and outgrowth at foreign sites50.

Of note, the vast majority (90%) of primary tumors in the mCRC 
cohort exhibited subclonal selection consistent with the metastatic 
clone having a selective growth advantage (Fig. 5a). By contrast, a 
smaller proportion of early stage (I–III) CRCs (33%) exhibited pat-
terns consistent with subclonal selection23, suggesting that the mode 
of tumor evolution may correlate with disease stage or aggressive-
ness, although larger studies are needed to investigate this trend. 

Whereas drivers were not enriched in metastases when all cases were 
considered (Fig. 2c), stratifying by the mode of tumor evolution 
revealed the enrichment of private high-frequency (CCF > 20%) 
driver mutations in metastases evolving under stringent selection 
compared to those evolving neutrally (Supplementary Fig. 26),  
suggesting that further subclonal driver mutations may occur  
during the growth of some metastases. Nevertheless, a sizeable  
proportion (43%) of distant metastases evolved neutrally, poten-
tially reflecting the high fitness of the metastatic clone, consistent 
with a fitness plateau56.

The finding that early dissemination—which results in suc-
cessful metastatic seeding—can occur before the primary tumor is 
clinically detectable in the majority (80%) of patients with mCRC 
in this cohort underscores the importance of detecting malignancy 
at the earliest possible stage (Fig. 6b). Such small tumors fall below 
the detection limits for current imaging modalities, but advances 
in profiling circulating cell-free tumor DNA may ultimately enable 
earlier non-invasive detection57,58. Importantly, a considerable num-
ber of patients with mCRC did not exhibit early systemic spread, 
suggesting that colonoscopy can be beneficial in this subgroup. Our 
data also raise the possibility that patients with early-stage disease 
with combinations of driver genes that confer a high risk of metas-
tasis may particularly benefit from adjuvant chemotherapy to tar-
get micro-metastatic disease59. Although the clinical utility of this 
approach needs to be prospectively evaluated, our findings provide 
a rationale for patient stratification and therapeutic targeting.
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Methods
Clinical specimens, pathology review and sequencing studies. In brief, archived 
formalin-fixed paraffin-embedded (FFPE) tissue specimens from 10 patients with 
metastatic CRC, including primary tumor, matched metastases and adjacent normal 
colon tissue, were obtained from the Medical University of Vienna brain metastasis 
biobank, which was established in accordance with ethical guidelines (approval 
078/2004). Tissue specimens were collected during the course of routine clinical 
care and clinical data were retrieved by retrospective chart review. All samples 
were de-identified and patients in the brain metastasis cohort were deceased prior 
to initiating this study. Brain metastases were available for all patients (n = 10) 
and for several patients metastases to the liver (n = 1), lung (n = 1) and regional 
lymph nodes (n = 4) were also available (Supplementary Table 1). For 6 of the 10 
patients, multiple specimens (n = 3–5) from both the primary tumor and metastasis 
were sampled and sequenced (Supplementary Table 1). Histological sections were 
independently reviewed by expert pathologists (A.S.B., P.B. and C.J.S.). The Ki-67 
proliferative index was determined using immunohistochemical staining using 
the Ki-67 antibody, as previously described60. Consistent with the growth of CRC 
brain metastases in an expansive rather than infiltrating fashion61, no normal brain 
parenchyma was observed within the main brain metastasis lesion.

For all patients, regions of high-cellularity (>60%) were selected for DNA 
isolation using the QIAamp DNA FFPE Tissue Kit (Qiagen). Libraries were 
prepared using the Agilent SureSelect Human All Exon kit or Ilumina Nextera 
Rapid Capture Exome kit for sequencing on the Illumina Hiseq 2000/2500 or 
Nextseq 500. Paired sequencing reads were aligned to the human reference genome 
build hg19 with BWA (v.0.7.10)62. Duplicate reads were flagged with Picard 
Tools (v.1.111). Aligned reads were further processed with GATK 3.4.0 for local 
re-alignment around insertions and deletions and base quality recalibration.

We also analyzed de-identified exome-sequencing data from patients with 
mCRC in four published datasets21,29–31 using the same unified bioinformatics 
framework described below. After excluding tumors with low purity (<0.4), we 
retained 46 tumor specimens from 13 patients with mCRC who had paired samples 
of liver metastases and refer to this as the liver metastasis cohort.

Somatic SNV detection and filtering. sSNVs were called by MuTect (v.1.1.7)63 
with paired tumor and normal sequencing data. sSNVs that failed to pass the 
internal filters of MuTect, had fewer than 10 total reads or 3 variant reads in the 
tumor sample, fewer than 10 reads in the normal sample or mapped to paralogous 
genomic regions were removed. Additional Varscan (v.2.3.9)64 filters were applied 
to remove sSNVs with low average variant base qualities, low average mapping 
qualities among variant-supporting reads, strand bias among variant-supporting 
reads and high average mismatch base quality sums among variant-supporting 
reads, either within each tumor sample or across all tumor samples from the 
same patient. Additional filtering removed sSNVs detected in a panel of normals 
by running MuTect in single-sample mode with less stringent filtering criteria 
(artefact detection mode). sSNVs called in at least two normal samples were 
included in the panel of normal sSNV list. For FFPE samples, sSNVs called in 
samples from one patient were checked against samples from all other patients 
to flag those that might be artefactual. The maximum observed VAFs across all 
samples from each patient were calculated based on raw output files from  
MuTect. sSNVs with maximum observed VAFs between 0.01 and 0.05 in at least 
two other patients were removed. Small indels were called with Strelka (v.1.0.14)  
and annotated by Annovar (v.20150617)65. sSNVs and small indels in protein-
coding regions were retained for downstream analyses. Additional filters were 
applied to exclude possible artefactual sSNVs due to the processing of FFPE 
specimens. Specifically, artefacts among C>T/G>A sSNVs with bias in read pair 
orientation were filtered in each individual FFPE sample, similar to the previously 
described approach66.

For patients with MRS data, we sought to exploit this information by retrieving 
read counts for sSNVs across samples from the same patient. To obtain depth and 
VAF information across all samples from the same patient, for each sSNV and in 
each tumor sample that an sSNV was not originally called in, the total reads and 
variant-supporting reads were counted using the mpileup command in SAMtools 
(v.1.2)67. Only reads with mapping quality ≥40 and base quality at the sSNV locus 
≥20 were counted and used to calculate VAF values for that sSNV.

Copy-number analysis, tumor purity and CCF estimation. Copy-number 
analysis was performed using TitanCNA (v.1.5.7)68. In brief, TitanCNA uses depth 
ratio and B-allele frequency information to estimate allele-specific absolute copy 
numbers with a hidden Markov model, and estimates tumor purity and clonal 
frequencies. Only autosomes were used in copy-number analysis. First, for each 
patient, germline heterozygous SNPs based on dbSNP build 138 were identified 
using SAMtools and SnpEff (v.3.6) in the normal sample. HMMcopy (v.0.99.0)69 
was used to generate read counts for 1,000-bp bins across the genome for all tumor 
samples. Whole-exome sequences from multiple normal samples per patient 
were pooled separately for the purpose of calculating read counts in the bins and 
the pooled normal read depth data were used as controls only for the calculation 
of depth ratios. TitanCNA was used to calculate allelic ratios at the germline 
heterozygous SNP loci in the tumor sample and depth ratios between the tumor 
sample and the pooled normal data in bins that contained those SNP loci. Only 

SNP loci within whole-exome sequence-covered regions were then used to estimate 
allele-specific absolute copy-number profiles. TitanCNA was run with different 
numbers of clones (n = 1–3). One run was chosen for each tumor sample based on 
visual inspection of fitted results, with preference given to the results with a single 
clone unless results with multiple clones had visibly better fit to the data. Results 
from tumor samples from the same patient were inspected together to ensure 
consistency. Overall ploidy and purity for each tumor sample was calculated  
from the TitanCNA results. For the public datasets including liver-exclusive 
mCRCs, cases with estimated purity >0.4 in both the primary tumor and paired 
metastases (Supplementary Fig. 2) were included since low purity hinders accurate 
SNV/CNA calling.

Mutational CCFs were estimated with CHAT (v.1.0)70. CHAT includes a 
function to estimate the CCF of each sSNV by adjusting its VAF based on local 
allele-specific copy numbers at the sSNV locus. sSNV frequencies and copy-
number profiles estimated from previous steps were used to calculate CCFs for all 
sSNVs in autosomes (using a modified function). The CCFs were also adjusted 
for tumor purity. The merged CCF of each sSNV is computed by integrating CCFs 
from multiple regions when MRS data are available:
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where di and CCFi are the sequencing depth and CCF estimation in region i, 
respectively. Of note, the vast majority (99%) of P/M shared sSNVs have CCF (or 
merged CCF) >60%, a cut-off that also optimally distinguishes the site-private 
clonal and subclonal sSNV clusters (Supplementary Fig. 6). We thus use 60% as the 
CCF cut-off to define clonal versus subclonal sSNVs in the PMGD analysis.

Data processing for downstream analyses. For each tumor site (primary or 
metastasis) in a patient, the average CCF estimate of a sSNV is set to 0 if neither 
of the following two criteria are met (1) VAF ≥ 0.03 and variant read count ≥3; (2) 
VAF ≥ 0.1 in any of the regions. The following additional filters were applied to 
summarize the MRS P/M data in a given patient. First, filter out sSNVs without 
VAF ≥ 0.05 and variant read count ≥3 or VAF ≥ 0.1 in any samples from this pair 
of sites. Second, filter out sSNVs with total read depth <20 from either of the two 
tumor sites. Third, filter out all sSNVs in chromosome regions with LOH in all 
specimens from one tumor site but not in all samples from the other tumor site. 
Fourth, for sSNVs not present in any specimens with LOH, filter out sSNVs that 
satisfy the following criteria in specimens from at least one of the two tumor sites: 
(1) absent in some samples with LOH; (2) present in any samples without LOH.

Driver enrichment analysis. Driver fold enrichment was determined based on 
colorectal adenocarcinoma driver genes (defined by combining IntOGen v.2016.538 
and TCGA39 including 221 genes, Supplementary Table 3) or all pan-cancer 
drivers, including 369 high-confidence genes40 that had non-silent coding sSNVs/
indels out of the total number of genes with non-silent coding sSNVs/indels. The 
resulting metric was normalized to the fraction of driver genes out of all genes in 
the human genome. Clonal mutations (CCF > 60% in primary tumor or metastasis; 
merged CCF was used for MRS data) were divided into three sets that represented 
shared, primary tumor-private and metastasis-private mutations, for which only 
distant metastases were considered. Driver gene fold enrichment was calculated for 
each set of mutations by randomly sampling 15 out of 25 P/M pairs from the whole 
cohort, aggregating them to calculate one driver enrichment score, and repeating 
this analysis 100 times (n = 100 downsamplings) to derive a test statistic. For each 
downsampling, the driver enrichment score was calculated as:

=  − ∕  − 
∕

n n
n n

Enrichment fold score
(driver non silent clonal) (all non silent clonal)

(driver genes) (total genes)
(2)

where n(all non-silent clonal) and n(driver non-silent clonal) correspond to the 
total number of non-silent clonal mutations and the number of non-silent clonal 
mutations in driver genes, respectively. Here n(driver genes) and n(total genes) 
correspond to the total number of drivers reported for CRC (n = 221) or pan-
cancer (n = 369) and the number of coding genes in the genome (n = 22,000), 
respectively.

Orthogonal validation of early metastasis driver gene modules. Clinical 
annotations and targeted sequencing data were obtained for the GENIE33 (v.3.0) 
and MSK-Impact32 CRC cohorts from Synapse (http://synapse.org/genie) and 
cBioPortal (http://www.cbioportal.org/study?id=crc_msk_2018), respectively. The 
MSK-Impact cohort includes early-stage primary CRCs, primary CRCs that are 
known to have metastasized and the metastatic lesion (predominantly liver) from 
1,099 patients with mCRC and a total of 1,134 samples with available sequencing 
and clinical covariates, including stage, microsatellite status and time to metastasis. 
As the mCRC discovery cohort did not include any cases with microsatellite 
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unstable tumors, these were removed, as were cases with POLE mutations. 
Microsatellite stable samples were divided into early-stage non-metastatic samples 
(n = 57), metastatic primary tumors (n = 440) and metastatic samples (n = 498).

The GENIE cohort is composed of 39,600 samples profiled with different 
targeted sequencing panels from which CRC samples were selected (oncotree 
codes: COADREAD, COAD, CAIS, MACR, READ and SRCCR). In order to avoid 
duplicated samples, all MSK-Impact samples from the GENIE cohort were removed, 
as were duplicated samples from the same patient, resulting in 2,666 samples, 1,756 
of which were from primary tumors. As the GENIE cohort does not currently 
include stage or outcome information, all primaries are assumed to be non-
metastatic, although some may be stage IV or diagnosed as metastatic in the future.

All possible combinations of recurrent putative metastasis driver genes (APC, 
TP53, KRAS, SMAD4, PIK3R1, BRAF, AMER1, TCF7L2, PIK3CA, PTPRT and 
ATM) identified in the mCRC cohort were evaluated in metastatic relative to 
early-stage cases using a two-sided Fisher’s exact test (with Benjamini–Hochberg 
adjustment for multiple testing). The enrichment analysis was calculated for 
the combined MSK-Impact and GENIE primary CRC cohort, as well as for the 
MSK-Impact cohort alone (Supplementary Table 8). As the number of genes in 
a module increases, the specificity of the association with metastasis increases, 
whereas the frequency of the module and in turn power to detect an association 
decreases (Supplementary Fig. 25). Although combining datasets may potentially 
introduce some biases, because we assume that all GENIE primary samples are 
non-metastatic and microsatellite stable, this will render our analyses conservative. 
Indeed, it is worth noting that although these results are already highly significant, 
they are likely conservative for several reasons: (1) due to the short follow-up 
time, some cases with early-stage tumors may develop metastases; (2) imbalanced 
sample size with nearly twice as many patients with early-stage disease versus cases 
of metastatic disease; (3) several putative metastasis drivers that were identified in 
the mCRC cohort are not represented on the targeted sequencing panel and hence 
cannot be evaluated.

Phylogenetic tree reconstruction and FST computation. We ran PHYLIP71  
(http://www.trex.uqam.ca/index.php?action=phylip&app=dnapars) and applied 
the maximum parsimony method to reconstruct the phylogeny of multiple 
specimens from individual patients based on the presence or absence of SNVs 
and indels. When multiple maximum parsimony trees were reported, we chose 
the top ranked solution. FigTree (http://tree.bio.ed.ac.uk/software/Figtree/) was 
used to visualize the reconstructed trees. We computed the FST statistic for each 
primary tumor or metastasis using the Weir and Cockerham method44 based on 
the adjusted frequency of subclonal sSNVs (merged CCF < 60%) identified in MRS 
data. Clonal mutations (merged CCF > 60%) did not contribute to intratumor 
heterogeneity and were excluded in FST calculations.

Spatial agent-based modeling of tumor progression. We extended our previously 
described three-dimensional agent-based tumor evolution framework19,23 to  
model tumor growth, mutation accumulation and metastatic dissemination  
after malignant transformation under different evolutionary scenarios in P/M 
pairs. Pre-malignant clonal expansions before transformation do not alter the  
genetic heterogeneity within a tumor and were therefore were not modeled  
(Figs. 1c, 4a and Supplementary Fig. 15). We assume that dissemination occurs 
after malignant transformation of the founding carcinoma cell as invasion  
(a cardinal feature of carcinomas) is a requirement for metastasis. We have 
previously used this framework to model primary tumor evolution23. In this  
model, spatial tumor growth is simulated by the expansion of deme subpopulations 
(composed of approximately 5,000 cells with diploid genome), mimicking  
the glandular structures that are often found in CRCs and metastases and 
consistent with the number of cells found in individual CRC glands (around  
2,000–10,000 cells)72. Model assumptions are detailed in Supplementary Table 5.  
The deme subpopulations expand within a defined three-dimensional cubic 
lattice (Moore neighborhood, 26 neighbors), through peripheral growth while 
cells within each deme are well-mixed without spatial constraints and grow by 
a random birth-and-death process (division probability P and death probability 
Q = 1 − P at each generation). The notion of peripheral growth is supported by 
recent studies, which indicated that cancer cells at the periphery of the tumor 
proliferate much faster than those at the center73. Moreover, peripheral growth 
results in a power law model of net tumor growth (Supplementary Fig. 15b) and 
is supported by data on CRCs74. The first deme is generated via the same birth-
and-death process, beginning with a single transformed founding tumor cell. Here 
we used the following parameters: P = 0.55 and Q = 0.45 for the deme expansion 
in both the primary tumor and metastasis. Thus the cell birth/death probability 
ratio for the founding lineage is P/Q = 0.55/0.45 ≈ 1.2. This is supported by the 
observation that there is no significant difference in proliferation rates based on 
Ki-67 staining of paired CRCs and brain metastases (Supplementary Fig. 10b), 
as previously reported in liver metastases75. Based on these values of P and Q, 
approximately 3 years are required from transformation to the diagnosis of primary 
carcinoma (approximately 109 cells; Supplementary Fig. 15b). Once a deme exceeds 
the maximum size (10,000 cells), it splits into two offspring demes via random 
sampling of cells from a binomial distribution (Nc, P = 0.5), where Nc is the  
current deme size.

During the growth of the primary CRC, a single cell from a random deme at 
the tumor periphery is randomly chosen to seed the metastasis, which supported 
by mounting pathological evidence of invasive cells in the tumor front and the 
fact that blood vessels are also mostly distributed in the invasive front in CRC76. 
The total cell number at the time of metastatic dissemination is denoted by Nd. 
The metastasis grows via the same model as the primary tumor, starting from the 
disseminated tumor cell(s).

During each cell division, the number of neutral passenger mutations acquired 
in the coding portion of the genome follows a Poisson distribution with mean u. 
Thus, the probability that k mutations occurred in each cell division is as follows:

= =
−

P x k u
k

( ) e
!

(3)
k u

where an infinite sites model and constant mutation rate are assumed during tumor 
progression. For simplicity, we do not simulate CNAs, LOH or aneuploidy, and 
all mutations are heterozygous. Under the neutral model, all somatic mutations 
are assumed to be neutral passenger events and do not confer a fitness advantage, 
whereas in the subclonal selection model, beneficial mutations (or advantageous 
mutations) arise stochastically via a Poisson process with mean us during each cell 
division. We assume us = 10−5 per cell division in the genome23,77. We investigated a 
relatively strong positive selection coefficient (s = 0.1), where s specifies the increase 
in cell division probability per cell division when a beneficial mutation occurs 
in the neutral cell lineage. The cell birth and death probabilities for a selectively 
beneficial clone are Ps = P(1 + s) and Qs = 1 − Ps = 1 − P(1 + s), respectively, thus 
the selective advantage is defined as s = Ps/P − 1. We selected s = 0.1, as we have 
previously shown that the resultant patterns of between-region genetic divergence 
can be clearly distinguished from those arising under effectively neutral growth23.

During simulation of primary and metastatic growth, each mutation is 
assigned a unique index that is recorded with respect to its genealogy and host 
cells, enabling analysis of the mutational frequency in a sample of tumor cells or 
the whole tumor during different stages of growth. We simulate growth until the 
primary and metastasis reach a size of approximately 109 cells (or around 10 cm3) 
comparable to the size of the clinical samples studied here, which ranged from 
4 to 15 cm in maximum diameter. To simulate each of the four scenarios of P/M 
growth, namely N/N, N/S, S/N or S/S, we used a mutation rate u = 0.3 per cell 
division in the exonic region (corresponding to 5 × 10−9 per site per cell division in 
the 60 Mb diploid coding regions) and selection coefficients s = 0 and s = 0.1 when 
modeling neutral evolution and subclonal selection, respectively, during growth of 
the primary tumor or metastasis. Under each of the four scenarios of P/M growth, 
100 time points (representing the primary tumor size at the time of dissemination, 
Nd) were sampled at random from a uniform distribution, log10(Nd) ~ U(2, 9), each 
giving rise to independent P/M pairs. The CCF from the whole tumor in both 
the primary tumor and metastatic lesions were obtained for each sSNV (site). 
CCFs > 60% in one site and CCFs < 1% in the other site were used to count the 
number of primary tumor-private and metastasis-private clonal sSNVs (Lp and Lm, 
respectively), consistent with the strategy used for patient samples.

SCIMET. We sought to infer two parameters that govern the dynamics of 
metastasis, namely u, the mutation rate per cell division in the exonic region, and 
Nd, the primary tumor size at the time of dissemination based on our spatial tumor 
simulation framework. The two parameters of interest (u and Nd) were randomly 
sampled from a prior discrete uniform distribution, namely 10 values from 0.003 
to 3 for u; and 7 values from 103 to 109 cells (on log10 scale) for Nd (Supplementary 
Tables 6, 7 and Supplementary Fig. 19). Discrete prior distributions for u and Nd 
were used to estimate the order of magnitude rather than the precise values of 
these two parameters. We simulated 70,000 paired primary tumors and metastases 
(composed of 109 cells each) under each of the four evolutionary scenarios (N/N, 
N/S, S/N or S/S). After generating the virtual P/M tumors, multiple regions (n = 4), 
each composed of approximately 106 cells, are sampled from an octant of tumor 
sphere, as was done for our clinical samples (Supplementary Fig. 19). The VAF of 
all sSNVs in the sampled bulk subpopulation is considered the true VAF (denoted 
by fT), whereas the observed allele frequency is obtained via a statistical model that 
mimics the random sampling of alleles during sequencing. Specifically, we used a 
binomial distribution (n, fT) to generate the observed VAF at each site given its true 
frequency fT and number of covered reads n. The number of covered reads at each 
site is assumed to follow a negative-binomial distribution (negative binomial(size, 
depth)) where depth is the mean sequencing depth and size corresponds to the 
variation parameter78. We assume depth = 80 and size = 2 for the sequencing data 
in each tumor region. A mutation is called when the number of variant reads is 
≥3, thereby applying the same criteria as for the patient tumors. The observed 
VAF for each mutation is converted to CCF and the merged CCF from four 
regions were computed (equation (1)) to mimic the patient genomic data. The 
nine summary statistics used to fit the CCF data are described in Supplementary 
Fig. 19 and Supplementary Table 6. The median values of the posterior probability 
distributions obtained from SCIMET are referred to as the inferred parameter 
values (ũ and N͠d). To be conservative, we define early dissemination as Nd (upper 
bound) < 108 cells (around 1 cm3 in volume) using the third quartile of the posterior 
distribution as the upper bound, whereas late dissemination is defined as Nd (upper 
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bound) ≥ 108 cells (Fig. 5a). We also evaluated the robustness of SCIMET to a 
higher birth/death rate ratio (Supplementary Fig. 21), collective dissemination by 
a cell cluster (n = 10 cells; Supplementary Fig. 22) or single-region sequencing data 
(Supplementary Fig. 23). Of note, both a higher birth/death rate ratio and single-
region sequencing data would result in overestimation of the timing of metastatic 
dissemination. A higher birth/death rate ratio yields a higher tumor growth rate 
thus the inferred primary tumor size at the time of dissemination would be larger 
than for a lower birth/death rate ratio. Single-region sampling results in a larger 
number of metastasis-private clonal mutations (larger Lm and larger H) compared 
with MRS, thus the timing of dissemination would be overestimated in accordance 
with the positive correlation between Lm or H and Nd. Overall, these comparisons 
demonstrate the robustness of SCIMET to different model assumptions.

We used a version of ABC based on the acceptance–rejection algorithm79 to 
estimate posterior probability distributions for the parameters of interest θ(u, Nd). 
The ABC version of rejection sampling is as follows:

For i = 1 to K under model M (N/N, N/S, S/N or S/S):

 1. Sample parameters θ′ from the prior distribution π(θ).
 2. Simulate data D′ using model M with the sampled parameters θ′ and summa-

rize D′ as summary statistics S′.
 3. Accept θ′ if d(S′, S) < ε, for a given tolerance rate ε, where d(S′, S) is a meas-

ure of Euclidean distance between S′ and S.
 4. Go to (1).

Using this scheme, we are able to approximate the posterior distribution by: 
P(θ|d(S′, S) < ε). We use a common variation of ABC47,80 in which, rather than 
using a fixed threshold ε, we sort all K distances calculated by d(S′, S) (step (3)), 
and accept the θ′ that generated the smallest 100 × η percentage distances. We 
use η = 0.01 so that the posterior is composed of 70,000 × 0.01 = 700 data points. 
The ABC procedure is performed using the R package abc81. To determine the 
most probable model of tumor evolution (N/N, N/S, S/N or S/S) in P/M pairs, we 
run the postpr method implemented in the R package abc, which integrates all 
simulation data from the four models to run the ABC procedures (steps (1)–(4)) 
and outputs the probability of each model based on the posterior distribution. The 
model (N/N, N/S, S/N or S/S) with the highest probability was selected.

A Monte Carlo cross-validation scheme was performed to assess the 
performance of SCIMET. This procedure involves randomly sampling a 
combination of parameters u′ and Nd′ (true parameters) and sampling 
10 simulations of the summary statistics S′ under this parameter set to 
independently run the ABC scheme. The posterior parameters u and Nd with the 
maximum probability were used as parameter estimates for one simulation,  
namely ũ and N͠d. The mean value of ũ and N͠d in 10 simulations was taken as the 
parameter estimate (inferred parameters) in the cross-validation. The process of 
Monte Carlo sampling and SCIMET inference was repeated 200 times under each 
of the four evolutionary scenarios (N/N, N/S, S/N and S/S). Comparison of the 
inferred versus true parameter values indicates the robustness of this approach 
(Supplementary Fig. 20).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data have been deposited at the European Genotype Phenotype Archive (EGA) 
under accession number EGAS00001003573. Data from previously published 
studies are available from the DDBJ (accession number JGAS00000000060)21 and 
the SRA (accession numbers SRP052609, SRP074289 and SRP041725)29–31.

Code availability
Code used for genomic data analysis and simulation studies are available at https://
github.com/cancersysbio/mCRCs and https://github.com/cancersysbio/SCIMET.
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